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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1851 .

CRITICAL SHEAR STRESS OF INFINITELY LONG, SIMPLY
SUPPORTED PLATE WITH TRANSVERSE STIFFENERS

By Manuel Stein and Robert W, Fralich

SUMMARY

A theoretical solution is given far the critical shear stress of
an infinitely long, simply supparted, flat plate with identical, equally
spaced, transverse stiffensrs of zero torgional stiffness. Results are
obtained by means of the Lagranglan mltiplier method and are presented
in the form of design charts. Experimental results are included and
are found to be in good agreement with the theoretical results.

INTRODUCTION

The design of shear web beams and nonwrinkling skin surfaces
requirea a knowledge of the critical shear gtregs of stiffened plates.
The purpose of the present paper is to give the theoretical critical
shear gstress of an infinitely long, simply supported, flat plate rein—
forced with identical, equally spaced, transverse gtiffeners.

The results are found by means of the Lagranglien multiplier method.
The stiffeners are assumed to have bending stiffmness but no torsional
stiffness and are agsumed to be concentrated alaong transverse lines in
the middle plane of the plate. The agsumption that the stiffeners have
no tarsional stiffness applies with 1little error in the case of many
open sectlon stiffeners., The agsumption that the gtiffeners are con—
centrated along transverse lines in the middle plane of the plate is
applicable whenever the width of the attached flange is small in com—
parison with the stiffener spacing.

The theoretlical analysis of the problem is given in the appendixes.
For completeness, an energy solution for the plate with relatively weak
stiffeners is glven in appendix A. The solution for a plate with
stiffeners of Intermediate or higher bending stiffness is given in
appendix B, The results are presented in the form of nondimensional
curves which cover the complete range of stiffener gtiffness and wvarious
stiffener spacings and in a table giving values from which the curves
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were drawn (table I). Experimental results are presented for 20 panels.
Comparison of these results with the present theary indicates good
agreement between theory and experiment.

SYMBOLS

T critical shear stress

Ttb°
ks critical shear—gtresa coefficlent —

Dn2
t thickness of the plate
b width of plate
d gtiffener spacing
b/d panel aspect ratio

Ept3
D flexural stiffness of the plate

12(1 — u?)

Ep Young!s modulus for plate
E Young'!s modulus for stiffener
I effective moment of inertia of gtiffemer
m Poisson's ratlio for material
EL ratio of stiffener stiffness to plate stiffness
Dd
A half wave length of buckles
w deflection of the plate
(¥s);  deflection of the 1'th stiffener
X,y reference axes
My, Ny Qy
r, 1 :} integers
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8ns bmn’ coefficients of deflection function

7n undetermined Lagrangian multipliers
v internal energy of bending of the plate
Vs internal energy of bending of stiffeners
T external work of the stresses

BACKGROUND

The problem of the buckling of stiffened plates in shear has been
treated by many authors by the use of both thearetical and semi-—
empirical methods. In 1930 Schmieden (reference 1) solved the differ—
ential equation for an infinitely long plate stiffened by closely
gpaced transverse stiffeners (equivalent to orthotropic plate) and
found exact stability criterions for shear buckling of plates with
simply supported edges and with clamped edges. By meking certain
almplifying modifications of the stability criterions, Schmieden
obtained approximate values of the critical shear stresses. ILater in
1930 Seydel (reference 2) obtained exact solutions for infinitely long
orthotropic plates with simply supported or clamped edges. With the
uge of the proper parameters Seydel's results can be readily applied
to plate—stiffener combinations. The values of the stresses obtained

. from Schmieden's theory lie sglightly below the exact values of Seydel.
In 1947 T. K. Wang (reference 3) used the energy method to obtain an
approximate solution for plate—sgtiffener combinations with simply
supported edges., Wang's results lie above the exact values of Seydel.
A1l the foregoing solutions are applicable only to the case of weak
stiffeners, where the gtiffening effect of the stiffeners can be
congidered to be uniformly distributed over the plate.

Solutions are algo available for plates reinforced by rigid
stiffeners. In 1936 Timoshenko (reference 4) treated the case of
simply supported rectangular plates reinforced with one or two
stiffeners. By means of the energy method Timoshenko found the
stiffener flexural rigidity necessary to prevent buckling acroas
stiffeners with the conservative agsumption that the stiffeners act as
simple supports. In 1948, Budiansky, Conner, and Stein (reference 5)
found the critical shear stress for an infinitely long, clamped plate
divided into square panels by nondeflecting intermediate supports which
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correspond to rigid stiffeners., They also considered the case of a
plate of infinite length and width having nondeflecting intermediate
supports that form an array of square panels.

Kuhn has written a number of papers on related subjects in which
he presents semiempirical results for the critical shear stress of
stiffened plates. (See, for example, reference 6.)

The available theoretical solutiong treat the relatively unime—
portant case of weak or closely spaced stiffeners and the case of
rigid stiffeners that divide a plate into square panels. None of the
theoretical solutions presents results for the practical range of
intermediate stiffener stiffness and very little theory is presented
for the practical range of spacing of rigid stiffeners. Also, 1t is
felt that the semiempirical results for transverse stiffened plates
cannot be extended to all stiffener spacings and stiffnesses without
a sound theoretical basis. The theoretical results of the present
paper cover the complete range of gtiffener stiffness and the practical
range of stiffener spacing.

RESULTS AND DISCUSSION

The critical shear stress for a plate—stiffener combination
is given by the formula

4
#
=y
l:\

[\

w

o
i

Curves are presented in figure 1 giving corresponding values of ks

and the stiffness paramster %% for simply supported, transversely

stiffened plates with panel aspect ratios of 1, 2, and 5. These
results are replotted in logarithmic form in figure 2 for comparison
with experimental results.

The points of discontinuity of the slopes in the curves of figure 1
represent changes in buckle patterns. The present results for an ortho—
iropic plate agree with the exact results of reference 2. The deri-
vation of the buckling criterion for an orthotropic plate (a plate
stiffened by stiffeners of low bending stiffness) is given in appendix A.
The derivation of the buckling criterion for plates stiffened by
atiffeners of higher bending stiffness 1s given in appendix B.
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In previous solutions, values of kg were found by using the
orthotroplic—plate curve and a cut—off at the value of k, for simply

supported panels. (See fig. l1.) These figures show that the present
golution yields values of kg that are considerably below those given

by the orthotropic-plate curve in the intermediate range of stiffener
stiffness. Also, the present solution for more rigid stiffeners yields
a curve that 1s higher than the cut—off, which is obtained by assuming
the stiffeners to have the effect of simple supparts. Since the conti-
nuity of the plate across the stiffeners of higher bending stiffness
certainly adds a constraint to the plate, a higher buckling stress than
that carresponding to a simply supported edge is obtained.

In figure 2, experimental results are compared with the theoretical
curveg. These results are from two sources., The firat set of experi-
mental data is taken from NACA tests on shear webs of 24S-T aluminum
alloy attached to torsion boxes. Drawings of a shear web and torsion
box and the method of loading are given in reference 7. Buckling loads
were obtained from the stiffener load—deflection curves which were .
taken from the original data. Each of the buckling loads given in the
present paper is the average load at which the stiffeners start to
deflect. The properties of the specimens and the buckling data are
given in table II.

The second set of experimental data is taken from NACA tests on
thick web beams described in reference 3. The beams were made of
24s—T aluminum alloy with heavy flanges and with joggled stiffeners
riveted to the flanges. The open spaces in the Jjoggles were filled
with goft metal., A picture of a failed beam is shown in figure 3.

The load was applied at the center and the reactions were at the

ends of the beams, Lateral deflections were prevented by lateral
gupports. The load, when strain was first observed in the stiffeners,
wag taken as the buckling load., The properties of the specimens and
the buckling data are given in table IIT.

The stiffener spacings for the test results are not the same as
thoge for the theoretical results. All the test results fall in the
expected regions among the theoretical curves. Only the group of test

results for which §-= 2,4 fall in the range which serves to verify

the present theory over previous theory which considered the orthotropic—
plate curve to hold up to the cut—off at which the gtiffeners are

agsumed to act as simple supports. The other groups of test results
agree with the present theory, but they do not cover the range in which
an appreclable difference exigts between the present theory and previous
theory. More experimental resulis are required to confirm the present
theory fully.
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CONCLUDING REMARKS

Charts are presented from which the theoretical critical shear
stresses can be obtained for infinitely long, simply supported plates
atiffened with identical, equally spaced, transverse stiffeners of zero
torsional stiffness. The theoretical results are based on the Lagrangian
multiplier method. Previous theory considered the orthotropic curve
to hold up to a cut—off value corresponding to the stiffener stiffness
at which the buckling load was equal to the buckling load of a simply
supported panel the size of each bay. Comparison of the present theary
and previous theory shows that previous theory gives unconservative
results for stiffeners of intermediate stiffness and conservative
results for stiffeners of high stiffness., Test results of 20 panels
are presented which are in good agreement with the present theory. For
a conclusive check additional test results are required.

ILangley Aeronautical Labaratory
National Advisory Committee for Aeronautics
langley Air Force Base, Va., January 28, 1949
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APPENDIX A
THEORETICAL SCOLUTION OF CRITICAL SHEAR STRESS OF PLATES

WITH TRANSVERSE STIFFENERS OF LOW BENDING STIFFNESS:

If the stiffener bending stiffness is low and the stiffeners are
fairly closely spaced, the buckle pattern may be considered independent
of the stiffener spacing, and the plate stiffener combination can then
be analyzed as a plate with different bending properties in each
direction, that is, an arthotropic plate. In this appendix buckling in
shear of an orthotropic plate is analyzed by means of the energy method.

The buckling configuration of the plate shown in figure k4 is
represented by the trigonometric series

o0

_ “Z nxy EZ nxy
= gin a, sin =X 4+ cos 0y b sin o (A1)

n=2,4,... n=1,3,...

which satisfies the boundary conditions of simple support term by term.
The internal bending energy of the plate V, the internal bending energy
of the stiffeners Vg, and the external work of the shear stresses T

are given by the expressions

' b A/ 2 2 2 2
;D a_g+a_%,_ a1 — ) Pw 0% [ ix dy
2 x= oy 2 d3y2  \dx dy
0 0
Ve = P (a2)

_EI
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Substitution of the expansion for w (equation (Al)) into these
energy integrals gives

4 = 2 - 2
z 2/ 40 E 2
= DAxt 8, E— + n2 + b 2 E— + n2
8b3 A2 B \a2

=1,35.00

o
|

<
1!
=
g
P
.’:3”
n
]
=
+
|
-
o'
jn]
N
=~

b 2
= 27ixn a
S Z

—l 3,-.. q—a P RN

Then

n=2,’+, seoe
Z‘” 2 2 ET
+ b 2 24 n2 + nh —
n XQ Da.
n=l’3, eee

16Dk _ >°° >°° nq "
- a,b A3)
ey rn o 2

n=l,3,... @=2,4,...
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where

_Ttpe
o2

k
]

According to the energy method the potential energy (V + V, — T)
mist be minimized with respect to the unknown coefficlents a, and bn.
By minimizing (V + Vg — T) with respect to the coefficients a and b,
the following set of equatlons is obtalned:

2 2 8bk, Z
a’n(%+n2) +nh§l q 2)=O (Al*)
- n

q—l 3,0-.

(n=2,1+,6, eee)

o 2 8bk,
bn <E— + n2> + nlL -E—I- E q = 0 (85)
A2 - qz)

q_—2 )4':0..

(n=1:315y---)

The coefficients s, can be found in terms of b, from
equation (Al). Substitution of the resulting expression for a  1In
equation (A5) results in the following equations:

b2 2 hgy
b<;§+n>+n-D—d-

‘<8ka
N

>

) > > - (s - )(® - q;%ﬁ *q ) v ﬂ

2 Dd
q=2,}+’aon r=l’3’000

(n=l) 3555 ') (A6)
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* A solution to equations (A6) exists if the following stability determi-

nant vanishes:

where

Q
5
|
N
%ol o
+
o]

A solution including all the a 's and D

c C C cee

2\ L gy (8bk€>2 -
+n =|~-{—
) ) oY Z

q=2,1+’ e

(AT)

a=25k, .. (ne - q2>(r2 _ 2) <Z_Z + q2>2 + gt g

(where n # r)

can be obtalned by

n
setting equal to zero the first appraximation of the determinant

equation (A7)

13 =0
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Similarly the second approximation includes all the a,'s, by,

da
an b3

2

Higher approximations are found in a similar manner. A second approxi—
mation was found to give satisfactory results. For a given approxi-—
mation 1t is necessary to try values of b/A and find the corre—
sponding values of kg wuntll a minimum value of kg with respect

to b/A is found for each %%. The results are given in table I and

in figure 1.
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APPENDIX B

THEORETICAL SOLUTION COF CRITICAL SHEAR STRESS OF PLATES

WITH TRANSVERSE STIFFENERS OF HIGHER BENDING STIFFNESS

In appendix A a theoretical solution for a plate stiffened by
stiffeners of low bending stiffness 1s presented where the buckle
pattern was taken as sinusoidal in the longitudinal direction. The
buckle pattern of plates with stiffeners of higher bending stiffnesas
is no longer sinusoidal in the longitudinal direction. It is then
necessary to consider deflection functions which are either symmetric
or antisymetric about the midpoint of each bay and are periodic over
an integral number of bays. The critical shear stress of plates with
transverse stiffeners of higher bending stiffness 1s analyzed by means
of the Lagrangian mmltiplier method.

Deflection functlons.— The correct buckle configuration for any
glven plate—stiffener combination is that which corresponds to the
lowest buckling load. Several types of configurations are investi-—
gated. These buckling configurations are represented by the following
two—dimensional trigonometric series (the coordinates are given in
fig. 4). Symmetric buckling, periodic over each hay:

© 0

- WX oy DY
w = :>> ;>> amn sin ] sin 5
m:2,4,... n=2,h’.oo
[ -] 00
mex nny
+ :;> ::> b, cos - sin — (Bla)

m=0,2,... n=l’3’c--

Antisymmetric buckling, periodic over each bay:

00 [+ ]
_ mix _, Oy
W= ::> :;> e 8in —af-sin =

m=2,)+,..o n=l’3,‘oa

oo

00
+ ;>> ;>> b, cog X gin BT (B1b)

mn d b

m=0,2,... n=2,4,...
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Symmetric buckling, periodic over two bays:

o« [
_ WX . nny
= a S1n —— 31N ———
jE; ig mn d b

m;l,B,... n=l,3,'--

© @
+ z 2 bmn cos % sin Bg—y (Blc)

m=1,3,... n=2,4,..,

Antisymmetric buckling, periodic over two bays:

o ]

w=> > %éin%sin%z

m=1,3,... n=2,4,...

o 00
mx nx
+ z 2 b cos —— sin =L (B1d)
mn d b

m=1,35ees 0=1,3,...

Symmetric buckling, one bay; antisymmetric dbuckling, next bay; periodic
over four bays:

[> ] [+ ]
= 2 > | 8in m;;; + (—l) 2 cos gin 2

m=l’3,... n=l,3,.‘.

+ >°° >°° b sin =X _ (—l) cos (Ble)

m;l)3’-'. n=2,h,...
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" Careful study has shown that other buckle patterns would require higher

buckling loads and that only the five buckle patterns given need be
congldered.

Theae deflection functions all satlisfy term by term the conditions
of simply supported edges at y = 0, b and continuity of the plate
across the stiffeners at x = 0, d, 2d,...« The condition that
atiffener deflection equal plate deflection at the stiffeners is
introduced by means of Lagrangian multipliers.

The deflection functions (Bld) and (Ble) are found to be the
governing ones for the aspect ratios investigated; the others lead
to unconsgervative solutions., Buckling criterions for the critical
ghear stress are derived far the deflection functions (Bld) and (Ble).

Antisymmetric buckling, perlodic over two bayas.— The deflection
of the plate is given by equation (Bld) as

o] [+ o]
v = t:> j:> an gin EEE gin E%Z

m1,3,ooo n=2,)+,on-

oo

o ]
mx nry
+ :;E :>> bmn cos = 8in 3
m=l,3,... n=l’3’ao.

The deflection of the 1tth stiffener is taken as

(ws)i = E A4 sin E%Z (B2)

n=l,3,...
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where, since the interval to be considered includes two gtiffeners, 1 = 1°
and 2, The boundary conditions that stiffener deflection equal plate
deflection are

o

w(id,y) - (wg)y = (1=1,2)

or upon substitution,

> P+ An1

m=1,3,..0

:E P = Spp =

m=l,3’oc-

1
o

(n=1,3500.)

)
Q

(n=l:3: o -)

These equations show that Ny = —Ahz. I A, 1s redefined as AN
the boundary conditions beccme

E bmn + An =0 (n=1,3,...) (B3)

m=l,3,..-

These boundary conditions will be satisfied in the energy expression by
means of Lagrangian mmltipliers.

The intermal bending energy of the plate 7V, the internal bending
energy of the stiffeners Vg, and the external work of the shear

stresses T are given by the expressions
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into

2
> -2(1 -u
f \[ axe aye

a (Ws)i dy

—l 2,

ff
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x dy ax dy
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3%

) <ax 33*)2

dx
ax2 dy2 v

(B4)

’

)

Substitution of the deflection functions of the plate and stiffeners

these energy integrals gives

2
E E amz <m2 by n2>2
I+b3 a2
m=1,3,... n=2,4,,
[« -] o0 2
DSOS w5
2
a
m=1,3,... D=1,3,...
r (B5)
EIn n
" op3 E A“
n=1,3,.
= Lrtx a b 24
mm mq <q2 — 2 )
m=l,3,... n=2’)+’.¢o q=l’3,oao
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The energy method requires that the potential energy (V + Vg = T) .

be minimized with respect to the a's, b's, and A's., Since the ats,
bts, and A's are, however, bound by equations (B3), the minimization
is performed by the Lagrangian multiplier method by minimizing the
following function F with respect to the a's, bts, and A's

V4 Vg =T =
ZnEDSd_- ™ <Z By + An) ~ (56)
) m=l,3,.oo
h‘b3 n—l,3’nvo

where the 7's are the Lagrangian multipliers., When this minimization
is performed, the following set of equations 1s obtained:

2 2 16k )
‘ F_ o= eahnl(}n h—-+ n§> + 8b
aamn d2 T d mq

q=1,3540.

(n=1,3,...)
(n=2,4,...)

oF 2 P2 é>2 16ks b mnq .
_.__=0=2'b m- = + n + — %. +
3 mn< a2 " d} (g2 - 2) L e

a=2,k4,5440
(m=1’3:---)
(n=l:3:--~)
jgi =0 = &Ez,nhah +y (n=1
aAn' Dd n n=1,3,...)
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When the equations (B7) are combined, the following equations are
obtained:

2 2
b m2 b—- + n2 - QE;I n)‘"An
mn 32 Dd

S e

9=2,%, 000 T=1,3,... - (ne - qe)(re - qz)(ma 2+ q2>2

ae
’ (m=1,3,...)
(n"]-’ 350ee )
Equations (B8a) written in matrix form are
. - ] [ -]
le le3 le5 ees bml 2Al
Cu31  Cm3 Cm3s  o++| |Pm3 g 169A3 ,
T Da (BSH)
Cm51 Cm53 Cm5 eee bm5 125065
L_ * . L] -J - L] _ L *

- (m=113, o -)
where
2 2 o
o b2 2) (8k5b> n“n?q®
C  ={(m~ —+n -
mn a2 nd 2

2 2
2 2 2 b 2
- — +
... (€ -0) (m a2 q)

) ) 8k b 2 bad m2q2rn
mr = Cmrn = T 7d §

q=2,k45... ( - q_2>(r2 _ q2)<m2 . q2>2
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A solution including all the a.mn's and bml's can be obtained
by the first approximation of the matrix equation (B8b)

Cubmy = 2 25 &1 (m=1,3,...)  (29)

Substitution of by, from equation (B9) into the boundary equation (B3)
yields

x

- 1 1
E — — =0 (B10)
Cm]_ 2 -E;'I. Al
nd

ml,3,a'.

The following stability criterion is obtained by setting equal to
zero the coefficient of 4y :

I (B11)
‘m 2ZL
Da

B=1,35.00

Similarly, the second approximation includes all the amn's, b ml's 3
and b__'s. Two simultaneous equations result fram which b and b

m3 ! ml m3

can be found. Substitution of these values into the boundary equation (B3)
yields two linear homogeneous equations in Al and A3 If the determl-—

nant of the coefficients of these two equatlians is set equal to zero, the

following stability criterion is obtalned:
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© C ®

] Cp
E 2 lEI :E : 2 ¥ ;I
-
lecm3 le3 162 = le 2

c.,~-C
m. ml
m=1,3,.n- =l’3’.'. 3 3 Dd

c 2
- E ml3 =0

m=l,3,... lecm3 - le32

Higher approximations are found in a similar manner. A second
approximation was found to give satlsfactary results. For each of
these approximations, 1t 1s necessary to find the lowest value

of ks for each value of % The results are glven in table I and

in figure 1.

Buckling periodic over four bays.~— The deflection of the plate is

given by equation (Ble) as

m-1
2 = 2 mx nxx
w = ; ; a sin —= + (-1) ~ cos ain
mn 24 24 b
m=l,3,... n=l,3’0.-
. ® nl

mrx 2 mx nxy
+ b gin — — (1) © cos — |8in —

> > mn 24 2d b

nFl,3’ cee n=2,l",oo.

The deflection of the itth stiffener is taken as

(ws)i’zt__ %Bm%z

n‘1,2, oo

NACA TN No. 1851

(B12)

(B13)
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where 1 =1, 2, 3, and 4, since the interval considered includes four -
stiffeners. The boundary conditions

V(id:Y) - (Vs)i =0 (1=l,2’3:)*)
becoms
. ml
E a_ (-1) 2 -5, =0 (n=1,3,...)
m=1,35e0
- 1
E b (1) 2 -7, =0 (n=2,4,...)
M=1,35...
© m=1

(n=1,3,...)

o
B
L
~
|
+
&
no
]
o

m=1,3,.044
= 1
by (1) 2 —A, =0 (n=2,4,...)
m=ly3yeee
..} m=1 »
E &mn (-l)T + An3 =0 (n=1:3:--‘)
m=l,3,e¢..
[ ] m—1

EU"
D
]
+

&

(n=2,4,...)

m=l,3,ooo
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| - nd
. E & (1) 2 _An)+ =0 (n=l:3:---)
m=ly3yeee
[ m—=l
E b (1) 2 +4, =0 (n=2,k%,...)
m=1,35e0e

These equations show that

A == A =~ By = A (2,3, )

By = Bnp = = fn3 =~ Ay (n=2,4,....)

If A, 1s redefined as A, the boundary conditions become

\
w ml
o (1) 2 -4, =0 (n=1,3,...)
m=1l,35¢00
- o=l
E b (1) 2 _p =0 (n=2,4,...)
m=1,35e0. J

These boundary conditions will be satisfied in the energy expression by
means of Lagrangian multipliers.

The energy integrals are the same as the energy integrals (Bk4),
except that in the present problem the upper limit of integration 2d
is replaced by 4d and the upper limit of the summation 2 is
replaced by L.

f (BLY4)
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The deflection functlons of the plate (equation (Ble)) and stiffeners °
(equation (B13)) are substituted into these enmergy integrals and result
in the following expressions:

mt|STOS T @

m—l 3’0.- n-l 3’000

STOST

m=l,3’.o. n=2,h"ooo l"de

EIﬂ :EE::; Ah

n=1,2,...
él
= 8rtxn ;:> ;i> :E a a2 L S
mnmq( 1) (2 2)
m~l,3,... n=1,3,... q=2,4,... n--q

The minimization of (V + Vg - T) is performed by the Lagranglan

multiplier method by minimizing the followling function F with respect
to the ats, b's, and Als.

BT ST ST @7 oy,

ﬂuDd n=l,3,ooa m=l,3,...
» 'b3
o ni |
. + E E b (1) 2 -4 (B15)
n=2,l"".o- m—l’ 00

where the 7's are the Lagrangian multipllers.




24 RACA TN No. 1851

When the minimization is performed and the resulting equations
are combined, the following set of equations is obtained:

m—l )
E nq EI
a —r‘ q—e, Jeece bmq' ne—qe) 2_nAn(-l) -0
(m=1,3,...)
(n=l,3:°--)
6a
m—l ? (B16a)
r, —2- Y arer 2 % A (-l) =0
3=1,35¢.. (q' )
(m=l:3:-'-)
(n=2,1+,...)
S

where
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Equations (Bl6a) in matrix form are

—
A %I'm 0 —l%l‘m 0 %I‘m...
%r‘m Am2 —%I‘m 0 -%_%m 0 cse
0 - g r. 3 %? Fm 0 % [ oo
f; r_ %? T oay - %g L0 ...
0o - %% r o - %9 Iy Aps %% r ...
g% r o % T, 0 %% T, A -
. ' '. : : —
A first approximation of ks is found by considering all the =&
and bps's in equation (Bl6b).

2
Am 8y t 3 T Pmo

o

3 Tem+ Appbpp

Subgtitubion of a1 and
equations (Blk4k) ylelds

m+l

B
(-1) 2 2 -]%Al

m+1

2 E
(-1) & 2=

55/52

=

_(m:l: 35... )

(m=1,3,...)

(m=1,3,...)

S

25

2N
32 A,
162 A3
512 4
1250 A,

2592 A

t
ml 8

byps from equations (B17) into the boundary

(B16d)

(B17)
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= Ao 1 A
(> o EN

m=l’3,“.AmlAm2 5 n

32 = T
' -3_2 )

m=l,3’.,, AmlA'm2 - 5 rm
>  (B18)
1 — r

m
o8 E S\AL
I".'Il

N
=1,3,... 2mfm )

[ -]

_Z Pm x lEIA2=o

L
m=l,3:... %1%2—51‘111 32—

If the determinant of the coefficlents of the linear homogeneous

equations (B18) is set equal to zero, the following stability criterion
is obtained:

© Am2
> L2
- =T
1.3,... tmiwe m
A r 2

b n i (219)
|\ > °

i 2
m=1,3,... %1%2 —-§ rm

Similarly, from the second approximation, including all the &’
bns and 3 terms, the following stability criterion 1s obtained:
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TABLE I. — SHEAR-STRESS COEFFICIENTS FOR STIFFENED PLATES

WITH PANEL ASPECT RATIOS OF ONE,

TWO, AND FIVE

Plates with stiffeners of low Plates with stiffeners of higher
bending stiffness? bending stiffness
Antisymmetric Buckling
buckling periodic
periodic over over
ZL kg Aspect two bays four bays
Dd ratio
EL k EX k
Dd 8 Dd 8
0 5.34 0 5.53 0 6.08
2 10.34 2.91 17.85 7.09| 10.0
5 16.07 1 7.78] 9.8 19.03 | 10.5
20 37.14 22.29| 11.78 ® 10.86
50 68.99 o 13.86
100 112.2
200 184.6 0 9.65 0 5.5
3.35| 12.0 5.479 15.0
14.50] 16.0 11.93 ] 20.0
22.99{ 18.0 26.37| 23.0
33.11| 20.0 36.29 | 24.5
2 k5.771 22.0 68.92 | 26.0
61.97} 2k.0 1454 27.0
82.92| 26.0 625 28.0
112.3 | 28.0 ® 28.2
605 35.0
® 37.05
0 k2.5 0 13.37
18.021 70 k9.19 b 60
5 90.99} 90 112.8 [100
176.8 |100 220  Fiko
Wik .7 1120 w 143
T04.4 |140
8Tndependent of aspect ratio.

PA11 the eml, bmp, 8m3, 8nd bpy coefficients used.
CAll the &p3, by, ams, 8nd  bpg coefficients used.
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TABLE IT.- EXPERIMENTAL BUCKLING DATA OF SHEAR WERES

WITH UPRIGHTS NOT CONNECTED TO THE FLANGES

Uprights
P o | | (am) (n°m%f)sm) = (ko1)| s
2-D-0 5.0 23.5]0.0397|1/2 x 1/2 x 1/16 |221 | 2.66 {101
3-D-0 5.0/ 23.5] .0394] 3/4 x 3/4 x 1/16 |68 | 3.08 |{116.5
4-D-0 5.0 23.5] .0805| 3/4 x 3/b x 3/32 | 946 | 3.295]117.5
5-D-0 10.0| 23.5| .okok| 1/2 x 1/2 x 1/16 | 98.3| 1,21 | 43.3
6-D-0 10.0| 23.5| .0408] 3/k x 3/k x 1/16 | 306 |1.54 | Sk.2
7-D-0 10.0| 23.5| .oklof 3/4 x 3/k x 3/32 | 456 | 1,47 | 51.3
8-5-0 5.0/ 23.5| .0394| 1/2 x 1/2 x 0.064| 95.8| 2,895/ 109
9-5-0 5.0 23.5] .0399| 3/ x 3/% x 3/32 {456 | 3,01 |111
10-8-0 10.0{ 23.5| .oko|1/o x1/2x 1/16| 41.4| g | 28.6
11-8-0 10.0| 23.5| .0398| 3/4% x 3/% x 1/16 | 151.5| 1,357| 50.1
12-5-0 10.0( 23.5( .0405| 3/4 x 3/4 x 3/32 (217 | 1.41 | 50.3

85, stiffeners on one side of plate. NACA

D, stiffeners on both sides of plate.
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TABLE III. — EXPERIMENTAL BUCKLING DATA OF THICK WEB BEAMS

WITH UPRIGHTS CONNECTED TO THE FLANGES

Specimen| b a t Urrights EI | T .

(a) | (in.)| (4n.) | (4n.) (n°m%f11§f)siz°) B | (xa1) | s

V-12-7S | 9.88 | 7.00 |0.1005 J%x%x% 91.0| 15.5 |15.4

v-12-8s | 9.88 | 7.00 .10k ] 3/% x 3/ x 1/8 | 25.8] 15.4 |14.15
v-12-9D | 9.13 | 7.00 .1025| 5/8 x 5/8 x 1/8 | ko.4| 16.8 |13.65
V-12-10s| 9.88 | 7.00 .1043| 5/8 x 5/8 x 1/8 | 14.5] 16.3 {15,0
V-12-11D| 9.13 | 7.00 .1025| 5/8 x 5/8 x 3/32{ 30.3]| 17.2 {14.0
V-12-125| 9.88 | 7.00 .0987( 1/2 x 1/e x 1/16} 4.1{ 12.3 {12.7
V-12-13D| 9.13 | 7.00 .1000} 1/2 x 1/2 x 1/16} 11.3| 13.1 |11.15
v-12-14s| 9.88 | 7.00 .1007| 5/8 x 5/8 x 3/32] 11.2{ 13.2 |13.1
V-12-15D} 9.13 | 7.00 .1057| 5/8 x 5/8 x 1/16]18.8} 15.7 |12.0

a ~NACA_—~

S5, stiffeners on one side of plate.
D, stiffeners on both sldes of plate.
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Figure L4.- Infinitely long, simply supported plate, with transverse
stiffensrs, under shear.
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